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The successful implementation of nanotechnology in advanced
devices is predicated on the ability to control structure, size, and
composition on the nanoscale, and on a detailed understanding of
how properties develop as material size and surface characteristics
are adjusted. On the basis of this paradigm, ultraviolet nanolasers
have been produced,1 integrated FET arrays have been assembled
from nanowires and demonstrated to perform logic functions,2 and
gold nanoparticle sensors have been developed for DNA and RNA
detection.3 However, to date, the types of materials investigated
have been limited, with the majority of published work focused on
metals or metallic alloys, main group pnictides (pnicogen) group
15 element) and chalcogenides (the III-V and II-VI semiconduc-
tors), and oxides (magnetic ferrites and binary semiconductors).
As a class of compounds, the transition metal pnictides embrace a
wide range of electronic, magnetic, and optical properties and
remain an unexplored frontier on the nanotechnology landscape.4

One area of particular interest is the possible role of manganese
pnictide clusters in the reported ferromagnetism of some “spin-
tronic” materials. Spintronic materials demonstrate spin-dependent
electronic properties and can be formed by the homogeneous doping
of transition metals (typically manganese) into III-V semiconduc-
tors.5 However, phase segregation by manganese pnictide cluster
formation is a notorious problem in these systems and, in some
cases, is the likely source of the observed magnetic effects rather
than the doped semiconductor phase.6 Nevertheless, there has been
no independent investigation of the effect of particle size on the
properties of manganese pnictides.

Previous reports of transition metal pnictide nanoparticle syn-
theses are scarce.7 Our earlier studies, focused on the phosphides,
have demonstrated the successful synthesis of FeP nanoparticles
by desilylation chemistry reactions between Fe(III) salts and tris-
(trimethylsilyl)phosphine8 as well as from the reduction of FePO4

nanoparticulate precursors on surfaces.9 Both of these methods,
while potentially general, proved unsuccessful for the production
of the related manganese phosphide phase.

Here, we report a new synthetic strategy for the rapid production
of low polydispersity, highly crystalline transition metal phosphide
nanoparticles; the specific application of this methodology for
preparation (for the first time) of discrete MnP nanoparticles; and
the magnetic characteristics of these particles as a function of size.
This route involves the reaction of zerovalent transition metal
carbonyl complexes with phosphines in coordinating solvents at
moderate temperatures and appears to be general for a number of
transition metals (demonstrated here for manganese, iron, and
cobalt).

The treatment of Mn2(CO)10 with P(SiMe3)3 in trioctylphosphine
oxide (TOPO)/myristic acid at elevated temperatures produced MnP
as discrete nanoparticles (Figure 1A).10 The broad reflections in

the X-ray powder diffraction pattern (XRD) are consistent with
orthorhombic MnP and could not be successfully indexed on other
manganese phosphide phases or likely byproducts (manganese
metal, manganese oxide, etc.). Transmission electron microscopy
clearly shows the formation of spherical particles with narrow
polydispersity (less than 10% standard deviation, Figure 1B). These
samples are achieved in a single precipitation step and in high yield
(92%).11 The size of the nanoparticles12 can be adjusted to some
extent by the temperature and time scale of the reaction. For
example, MnP produced at 220°C for 24 h had a size of 5.11(
0.48 nm, whereas a heating profile of 250 (18 h) followed by 220
(18 h)°C produced particles of diameter 6.67( 0.33 nm. The high
degree of crystallinity in the particles is evident in the manifestation
of lattice fringes in high-resolution electron micrographs (see Figure
1B, inset). No evidence of stacking faults or other crystal defects
was detected. The particle nucleation and growth is also dependent
on the activity of the metal: FeP nanoparticle formation from
Fe(CO)5 and P(SiMe3)3 requires higher temperatures (270°C) and
produces smaller particles (3.16( 0.34 nm) after heating for 48 h,
whereas CoP nanoparticles form at still higher temperatures (320
°C) (Supporting Information).

In previously reported syntheses of nanoparticles of InP13 and
FeP,8 for example, the role of P(SiMe3)3 is typically to provide a
source of phosphide (P3-) by a redox neutral desilylation pathway.14

However, in our case, the phosphine is also a likely source of
oxidizing equivalents.15 This kind of reactivity between metals and
phosphines has been reported at elevated temperatures,7c,d,16 and
recently the preparation of bulk aggregates of amorphous FeP by
sonochemical reaction of Fe(CO)5 with P(CH2CH3)3 has been
described.17 Presumably, similar reactivity is occurring under our
conditions, which in turn suggests that the silyl group may not be
germane to metal phosphide formation. Indeed, preliminary results
indicate that ordinary alkyl phosphines are equally effective in MnP
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Figure 1. (A) The XRD pattern for MnP nanoparticles produced at 250
°C and matching orthorhombic MnP line diagram (JCDPS # 07-0384). (B)
A corresponding TEM micrograph showing 6.7(3) nm MnP nanoparticles.
Lattice fringes (inset) observed in a single particle are spaced at 0.242 nm
and correspond to the (111) plane of MnP.
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nanoparticle formation, thus expanding on the generality and
usefulness of the method (Supporting Information).

The temperature dependence of the dc magnetization18 indicates
that the MnP nanoparticles order ferromagnetically just below 300
K, consistent with the reported ferromagnetic Curie temperature
(Tc) of 291.5 K for bulk MnP.19 The ordering is evident in the
change in slope of the curves in the magnetization versus temper-
ature data (Figure 2A) and the appearance of saturation behavior
in the magnetization versus field data acquired below 300 K (Figure
2B). Below Tc, the particles display superparamagnetic behavior
with the 5.1(5) nm spherical particles exhibiting a blocking
temperature (TB) of 60.8 K and the 6.7(3) nm particles exhibiting
a higherTB of 74.3 K (Figure 2A).TB is identified by the location
of the bifurcation between zero-field-cooled (ZFC) and field-cooled
(FC) data and represents the temperature below which the super-
paramagnetic particles are unable to relax within the time scale of
the experiment.20 As is typical of a superparamagnetic system, the
coercivity (hysteresis) decreases asTB is approached and drops to
zero aboveTB, as illustrated for the 5.1(5) nm MnP particles in
Figure 2B. However, the hysteretic behavior in the field dependent
magnetization data below 50 K is significantly different from the
behavior of bulk (microcrystalline) MnP, which is reported to
undergo a ferromagnetic to metamagnetic transition at this tem-
perature.19 Apparently, the metamagnetic phase is completely
destabilized in the nanoparticles, and only ferromagnetic ordering
occurs within the nanoparticles at all temperatures belowTc.

In conclusion, nanoparticles of MnP have been produced for the
first time and are found to exhibit superparamagnetic behavior
below Tc with no evidence of a metamagnetic transition, as is
observed in bulk (microcrystalline) MnP. As such, nanoparticulate
precipitates of MnP are a possible source of observed ferromag-
netism in Mn-doped semiconducting phosphides. The synthesis was
achieved by a new method in which zerovalent metal carbonyl
complexes are treated with phosphines in coordinating solvents at
T g 220 °C. This route appears to be generally suitable for the
preparation of a number of metal phosphides (as illustrated here
for MnP, FeP, and CoP) and can even employ less-reactive (and
less expensive) alkylphosphines.
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Figure 2. (A) Temperature dependence of the magnetization for field-
cooled (open symbols) and zero-field-cooled (filled symbols) MnP nano-
particles under an applied magnetic field of 500 Oe. (B) Corresponding
variation of magnetization as a function of field for the 5.1(5) nm particles
at various temperatures.
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